Liechtenstein - Total greenhouse gas emissions (kt of CO2 equivalent)
The value for Total greenhouse gas emissions (kt of CO2 equivalent) in Liechtenstein was 180.00 as of 2018. As the graph below shows, over the past 28 years this indicator reached a maximum value of 260.00 in 2008 and a minimum value of 180.00 in 2018.
Definition: Total greenhouse gas emissions in kt of CO2 equivalent are composed of CO2 totals excluding short-cycle biomass burning (such as agricultural waste burning and Savannah burning) but including other biomass burning (such as forest fires, post-burn decay, peat fires and decay of drained peatlands), all anthropogenic CH4 sources, N2O sources and F-gases (HFCs, PFCs and SF6).
Source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR), EDGARv4.2 FT2012: http://edgar.jrc.ec.europa.eu/
See also:
Year | Value |
---|---|
1990 | 230.00 |
1991 | 230.00 |
1992 | 230.00 |
1993 | 240.00 |
1994 | 230.00 |
1995 | 230.00 |
1996 | 230.00 |
1997 | 250.00 |
1998 | 260.00 |
1999 | 250.00 |
2000 | 240.00 |
2001 | 240.00 |
2002 | 250.00 |
2003 | 260.00 |
2004 | 260.00 |
2005 | 260.00 |
2006 | 260.00 |
2007 | 240.00 |
2008 | 260.00 |
2009 | 240.00 |
2010 | 230.00 |
2011 | 210.00 |
2012 | 220.00 |
2013 | 230.00 |
2014 | 200.00 |
2015 | 190.00 |
2016 | 190.00 |
2017 | 190.00 |
2018 | 180.00 |
Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.
Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).
Statistical Concept and Methodology: The GHG totals are expressed in CO2 equivalent using the GWP100 metric of the Second Assessment Report of IPCC and include CO2 (GWP100=1), CH4 (GWP100=21), N2O (GWP100=310) and F-gases (c-C4F8 GWP=8700, C2F6 GWP=9200, C3F8 GWP=7000, C4F10 GWP=7000, C5F12 GWP=7500, C6F14 GWP=7400, C7F16 GWP=7820, CF4 GWP=6500, HFC-125 GWP=2800, HFC-134a GWP=1300, HFC-143a GWP=3800, HFC-152a GWP=140, HFC-227ea GWP=2900, HFC-23 GWP=11700, HFC-236fa GWP=6300, HFC-245fa GWP=858, HFC-32 GWP=650, HFC-365mfc GWP=804, HFC-43-10-mee GWP=1300, SF6 GWP=23900).
Aggregation method: Sum
Periodicity: Annual
Classification
Topic: Environment Indicators
Sub-Topic: Emissions