About this application: This application provides summary profiles showing frequently requested data items from various US Census Bureau programs. Profiles are available for the nation, states, and counties.
Median value of owner-occupied housing units, 2014-2018 - (US Dollars)
County
Value
Barbour
104,800
Berkeley
172,800
Boone
69,900
Braxton
93,000
Brooke
92,000
Cabell
123,200
Calhoun
73,500
Clay
82,100
Doddridge
116,800
Fayette
90,500
Gilmer
91,300
Grant
137,300
Greenbrier
120,500
Hampshire
143,700
Hancock
92,000
Hardy
126,400
Harrison
113,500
Jackson
121,000
Jefferson
240,600
Kanawha
112,400
Lewis
104,800
Lincoln
81,700
Logan
90,100
Marion
112,800
Marshall
103,300
Mason
77,400
McDowell
33,800
Mercer
92,200
Mineral
135,100
Mingo
75,800
Monongalia
188,700
Monroe
108,100
Morgan
179,800
Nicholas
93,100
Ohio
119,400
Pendleton
122,300
Pleasants
107,000
Pocahontas
124,300
Preston
106,800
Putnam
163,800
Raleigh
105,700
Randolph
99,200
Ritchie
85,800
Roane
93,800
Summers
95,400
Taylor
103,600
Tucker
117,100
Tyler
97,400
Upshur
112,600
Wayne
97,800
Webster
67,200
Wetzel
101,000
Wirt
86,100
Wood
118,600
Wyoming
67,200
Value for West Virginia (US Dollars): $115,000
Sources: U.S. Census Bureau, American Community Survey (ACS) and Puerto Rico Community Survey (PRCS), 5-Year Estimates. The PRCS is part of the Census Bureau's ACS, customized for Puerto Rico. Both Surveys are updated every year.
Definition
Value is the respondent's estimate of how much the property (house and lot) would sell for if it were for sale.
This tabulation includes only specified owner-occupied housing units--one-family houses on less than 10 acres without a business or medical office on the property. These data exclude mobile homes, houses with a business or medical office, houses on 10 or more acres, and housing units in multi-unit structures. Certain tabulations elsewhere include the value of all owner-occupied housing units and vacant-for-sale housing units. Also available are data on mortgage status and selected monthly owner costs.
The median divides the value distribution into two equal parts: one-half of the cases falling below the median value of the property (house and lot) and one-half above the median. Median value calculations are rounded to the nearest hundred dollars.
Owner-Occupied - A housing unit is owner-occupied if the owner or co-owner lives in the unit, even if it is mortgaged or not fully paid for. The owner or co-owner must live in the unit and usually is Person 1 on the questionnaire. The unit is "Owned by you or someone in this household with a mortgage or loan" if it is being purchased with a mortgage or some other debt arrangement such as a deed of trust, trust deed, contract to purchase, land contract, or purchase agreement. The unit also is considered owned with a mortgage if it is built on leased land and there is a mortgage on the unit. Mobile homes occupied by owners with installment loan balances also are included in this category. For the complete definition, go to ACS subject definitions "Tenure."
Source and Accuracy
This Fact is based on data collected in the American Community Survey (ACS) and the Puerto Rico Community Survey (PRCS) conducted annually by the U.S. Census Bureau. A sample of over 3.5 million housing unit addresses is interviewed each year over a 12 month period. This Fact (estimate) is based on five years of ACS and PRCS sample data and describes the average value of person, household and housing unit characteristics over this period of collection.
Statistics from all surveys are subject to sampling and nonsampling error. Sampling error is the uncertainty between an estimate based on a sample and the corresponding value that would be obtained if the estimate were based on the entire population (as from a census). Measures of sampling error are provided in the form of margins of error for all estimates included with ACS and PRCS published products. The Census Bureau recommends that data users incorporate this information into their analyses, as sampling error in survey estimates could impact the conclusions drawn from the results. The data for each geographic area are presented together with margins of error at Using margins of error. A more detailed explanation of margins of error and a demonstration of how to use them is provided below.
For more information on sampling and estimation methodology, confidentiality, and sampling and nonsampling errors, please see the Multiyear Accuracy (US) and the Multiyear Accuracy (Puerto Rico) documents at "Documentation - Accuracy of the data."
Margin of Error
As mentioned above, ACS estimates are based on a sample and are subject to sampling error. The margin of error measures the degree of uncertainty caused by sampling error. The margin of error is used with an ACS estimate to construct a confidence interval about the estimate. The interval is formed by adding the margin of error to the estimate (the upper bound) and subtracting the margin of error from the estimate (the lower bound). It is expected with 90 percent confidence that the interval will contain the full population value of the estimate. The following example is for demonstrating purposes only. Suppose the ACS reported that the percentage of people in a state who were 25 years and older with a bachelor's degree was 21.3 percent and that the margin of error associated with this estimate was 0.7 percent. By adding and subtracting the margin of error from the estimate, we calculate the 90-percent confidence interval for this estimate:
Therefore, we can be 90 percent confident that the percent of the population 25 years and older having a bachelor's degree in a state falls somewhere between 20.6 percent and 22.0 percent.