Energy related methane emissions (% of total) - Country Ranking - Asia

Definition: Methane emissions from energy processes are emissions from the production, handling, transmission, and combustion of fossil fuels and biofuels.

Source: World Bank staff estimates from original source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/.

See also: Thematic map, Time series comparison

Find indicator:
Rank Country Value Year
1 Brunei 98.55 2008
2 Timor-Leste 88.31 2008
3 Uzbekistan 84.81 2008
4 Azerbaijan 84.42 2008
5 Qatar 82.29 2008
6 Russia 81.06 2008
7 Turkmenistan 78.76 2008
8 Syrian Arab Republic 69.87 2008
9 Dem. People's Rep. Korea 69.58 2008
10 United Arab Emirates 67.58 2008
11 Oman 67.08 2008
12 Iran 65.62 2008
13 Kuwait 64.74 2008
14 China 52.43 2008
15 Kazakhstan 51.85 2008
16 Malaysia 51.04 2008
17 Afghanistan 45.06 2008
18 Saudi Arabia 44.48 2008
19 Bhutan 41.18 2008
20 Armenia 38.53 2008
21 Turkey 27.66 2008
22 Nepal 26.86 2008
23 Georgia 24.31 2008
24 Korea 23.42 2008
25 Singapore 22.58 2008
26 Vietnam 22.14 2008
27 Sri Lanka 21.29 2008
28 Thailand 20.77 2008
29 Bahrain 18.16 2008
30 Yemen 17.06 2008
31 India 15.27 2008
32 Kyrgyz Republic 14.91 2008
33 Indonesia 14.19 2008
34 Pakistan 12.06 2008
35 Japan 10.57 2008
36 Cambodia 10.03 2008
37 Iraq 9.70 2008
38 Israel 8.29 2008
39 Philippines 7.34 2008
40 Lao PDR 6.95 2008
41 Mongolia 6.83 2008
42 Jordan 6.32 2008
43 Hong Kong SAR, China 6.00 1989
44 Myanmar 4.55 2008
45 Bangladesh 3.81 2008
46 Tajikistan 3.42 2008
47 Lebanon 1.92 2008
48 Macao SAR, China 1.60 1989

More rankings: Africa | Asia | Central America & the Caribbean | Europe | Middle East | North America | Oceania | South America | World |

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: IPCC category 1 = Energy. Methane emissions result largely from agricultural activities, industrial production landfills and wastewater treatment, and other sources such as tropical forest and other vegetation fires. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.

Aggregation method: Weighted average

Periodicity: Annual