Energy related methane emissions (% of total) - Country Ranking - Europe

Definition: Methane emissions from energy processes are emissions from the production, handling, transmission, and combustion of fossil fuels and biofuels.

Source: World Bank staff estimates from original source: European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/.

See also: Thematic map, Time series comparison

Find indicator:
Rank Country Value Year
1 Ukraine 68.76 2008
2 Romania 48.87 2008
3 Czech Republic 47.84 2008
4 Slovak Republic 46.23 2008
5 Poland 45.91 2008
6 Turkey 27.66 2008
7 Serbia 26.30 2008
8 Norway 25.80 2008
9 Bosnia and Herzegovina 25.64 2008
10 Moldova 23.65 2008
11 Slovenia 22.94 2008
12 Montenegro 21.79 2008
13 North Macedonia 20.42 2008
14 Germany 19.93 2008
15 Italy 19.18 2008
16 Hungary 17.73 2008
17 Croatia 17.33 2008
18 Bulgaria 17.13 2008
19 Greece 16.33 2008
20 Latvia 14.49 2008
21 Estonia 14.29 2008
22 United Kingdom 14.16 2008
23 Netherlands 14.07 2008
24 Luxembourg 12.50 2008
25 Lithuania 11.17 2008
26 Belgium 10.90 2008
27 Denmark 9.23 2008
28 Spain 8.95 2008
29 Sweden 8.47 2008
30 Belarus 8.37 2008
31 Austria 7.96 2008
32 Switzerland 6.99 2008
33 Finland 6.31 2008
34 France 5.73 2008
35 Albania 5.26 2008
35 Malta 5.26 2008
37 Portugal 3.55 2008
38 Cyprus 2.94 2008
39 Ireland 2.18 2008
40 Iceland 1.67 2008
41 Liechtenstein 0.00 2008
41 Andorra 0.00 2008

More rankings: Africa | Asia | Central America & the Caribbean | Europe | Middle East | North America | Oceania | South America | World |

Development Relevance: The addition of man-made greenhouse gases to the Atmosphere disturbs the earth's radiative balance. This is leading to an increase in the earth's surface temperature and to related effects on climate, sea level rise and world agriculture. Emissions of CO2 are from burning oil, coal and gas for energy use, burning wood and waste materials, and from industrial processes such as cement production. Emission intensity is the average emission rate of a given pollutant from a given source relative to the intensity of a specific activity. Emission intensities are also used to compare the environmental impact of different fuels or activities. The related terms - emission factor and carbon intensity - are often used interchangeably. The carbon dioxide emissions of a country are only an indicator of one greenhouse gas. For a more complete idea of how a country influences climate change, gases such as methane and nitrous oxide should be taken into account. This is particularly important in agricultural economies. The environmental effects of carbon dioxide are of significant interest. Carbon dioxide (CO2) makes up the largest share of the greenhouse gases contributing to global warming and climate change. Converting all other greenhouse gases (methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), Sulphur hexafluoride (SF6)) to carbon dioxide (or CO2) equivalents makes it possible to compare them and to determine their individual and total contributions to global warming. The Kyoto Protocol, an environmental agreement adopted in 1997 by many of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), is working towards curbing CO2 emissions globally.

Limitations and Exceptions: National reporting to the United Nations Framework Convention on Climate Change that follows the Intergovernmental Panel on Climate Change guidelines is based on national emission inventories and covers all sources of anthropogenic carbon dioxide emissions as well as carbon sinks (such as forests). To estimate emissions, the countries that are Parties to the Climate Change Convention (UNFCCC) use complex, state-of-the-art methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC).

Statistical Concept and Methodology: IPCC category 1 = Energy. Methane emissions result largely from agricultural activities, industrial production landfills and wastewater treatment, and other sources such as tropical forest and other vegetation fires. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared. A kilogram of methane is 21 times as effective at trapping heat in the earth's atmosphere as a kilogram of carbon dioxide within 100 years. The emissions are usually expressed in carbon dioxide equivalents using the global warming potential, which allows the effective contributions of different gases to be compared.

Aggregation method: Weighted average

Periodicity: Annual